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A spectral element method �SEM� is proposed for the accurate calculation of band structures of two-
dimensional anisotropic photonic crystals. It uses Gauss-Lobatto-Legendre polynomials as the basis functions
in the finite-element framework with curvilinear quadrilateral elements. Coordination mapping is introduced to
make the curved quadrilateral elements conformal with the problem geometry. Mixed order basis functions are
used in the vector SEM for full vector calculation. The numerical convergence speed of the method is inves-
tigated with both square and triangular lattices, and with isotropic and in-plane anisotropic media. It is shown
that this method has spectral accuracy, i.e., the numerical error decreases exponentially with the order of basis
functions. With only four points per wavelength, the SEM can achieve a numerical error smaller than 0.1%.
The full vector calculation method can suppress all spurious modes with nonzero eigenvalues, thus making it
easy to filter out real modes. It is thus demonstrated that the SEM is an efficient alternative method for accurate
determination of band structures of two-dimensional photonic crystals.
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I. INTRODUCTION

Photonic crystals �PCs� are a kind of artificial material
made of a periodic array of dielectric materials �1–3�. Com-
pared to a uniform dielectric material, PCs have different
energy spectra versus wave vector, which is known as band
structures of PCs. For some particular PCs, photonic band
gaps �PBGs� exist within the band structures. An optical
wave with frequency inside the PBGs cannot propagate
through the periodic material within these band gaps. This
property makes such a PC a perfect mirror for optical waves
within the frequency band gaps. Such properties of PCs have
motivated many researchers to investigate various methods
to produce waveguides and resonant cavities of extremely
high-Q factors using PCs �4�.

Accurate determination of the band structures of photonic
crystals is a critical step in the design of PCs. One can either
solve Maxwell’s equations or the Helmholtz equation to ob-
tain the electromagnetic fields in a PC system. Three com-
monly used methods for the determination of band structures
of photonic crystals are the finite-difference frequency-
domain �FDFD� �5�, finite element method �FEM� �13,14�,
and the plane-wave expansion �PWE� �6,7� methods to solve
Maxwell’s equations or the equivalent Helmholtz equation.
In the FDFD method, the Yee grid is used to spatially dis-
cretize the system with a structured mesh. The PWE method
discretizes the system in the reciprocal wave vector space.
The FEM uses an unstructured mesh to discretize the space.
These methods have been found to yield good results for the
determination of the band structures, but they usually require
a large number of points per wavelength �PPW� in order to
obtain accurate results. For example, in our experience, the
FDFD and FEM require at least 10 PPW to have numerical
error smaller than 1%; such relatively slow numerical con-
vergence is due to the use of relatively low-order �first-order�
basis functions �or equivalent basis functions in the FDFD
method�, or because of field discontinuities at the material

interfaces �PWE�. These traditional methods have second-
order accuracy or less.

Recently, the pseudospectral time-domain �PSTD� and
pseudospectral frequency-domain �PSFD� methods �8–11�
have been introduced to computational electromagnetics to
calculate electromagnetic fields with high accuracy. The de-
termination of band structure of PCs was solved by �12�
using a multidomain pseudospectral method solver �PSMS�.
It was demonstrated that the PSMS can achieve much higher
accuracy than the conventional methods such as PWE and
FDFD. The multidomain PSMS can deal with spatially
abrupt changes of permittivity without losing the accuracy.

In this paper, we propose an alternative method for accu-
rate determination of band structures based on the spectral
element method �SEM� with high convergence speed. The
basic principle of SEM is similar to FEM, but with different
choice of basis functions and quadrature integration. In our
scheme of SEM, all elements are quadrilateral in 2D, and the
basis functions are constructed by Gauss-Lobatto-Legendre
�GLL� polynomials �15–17�. The quadrilateral elements can
be either straight or curved depending on the problem geom-
etry. The basis functions in real space are mapped to the
basis functions in the reference domain by curvilinear map-
ping. By increasing the order of the GLL polynomials for the
basis functions, the accuracy increases exponentially, while
the number of basis functions increases slowly. Therefore,
the SEM can have higher accuracy and fewer basis functions
compared to the FEM. It is well known that when the scalar
FEM is used to solve a full vector field equation, the method
is flawed with the present of spurious modes with non-zero
eigenvalues. We apply a mixed order scheme for the choice
of basis functions for SEM, which can suppress all the spu-
rious modes having nonzero eigenvalues, which is similar to
the edge-element-based FEM.

We apply this SEM to two-dimensional �2D� arrays of
dielectric rods or air columns in 2D PCs by solving the
Helmholtz equation for the z component of electric �mag-
netic� field in the TM �TE� mode. The medium can be inho-
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mogeneous and anisotropic on the xy plane �i.e., in-plane
anisotropy�. We show that with only four points per wave-
length, the SEM can achieve a numerical error smaller than
0.1%. We also apply the full vector mixed order SEM to
calculate eigenmodes of 2D PCs with nonzero z components
of wave vectors.

The paper is organized as follow. In Sec. II, the Helmholtz
equation is introduced for anisotropic media, and the detail
of SEM is explained, including its GLL basis functions, dis-
cretization, curvilinear mapping, and mixed order SEM for
full vector calculation. In Sec. III, numerical results of square
lattice and triangular lattice PCs are shown, together with an
anisotropic PC controlled by an applied magnetic field, and a
square lattice PC with a z-component wave vector. Section
IV gives a brief conclusion.

II. FORMULATION

A. The 2D Helmholtz equations and SEM functionals for
anisotropic PCs

For a 2D electromagnetic problem in a medium with in-
plane anisotropy, the solution can be separated to two kinds
of modes: the TM mode and TE mode. For the TM mode,
only Ez, Hx, and Hy are nonzero, so that a scalar Helmholtz
equation for the electric field Ez can be formulated from
Maxwell’s equations

� � ��rs
−1�� � Ezẑ�� − k0

2�rzEzẑ = 0, �1�

where k0=� /c is wave number in vacuum, �= x̂ �
�x + ŷ �

�y ,
�rs= �

�xx �xy

�yx �yy
� is the relative in-plane anisotropic permeability,

and �rz is the relative permittivity in the z direction. For PCs,
the solution of this wave equation is a Bloch wave. As a
result, the electric field can be expressed as

Ez = UE�x,y�eik·r, �2�

where UE�x ,y� is a periodic function according to the corre-
sponding lattice structure, and k is the Bloch wave vector. In
order to apply the SEM, we should formulate the functional
for a variational method. This can be achieved by the inte-
gration of the dot product of field E

z
*ẑ �an asterisk denotes

complex conjugation� and the left-hand side of Eq. �1�. After
integration by parts and making use of the periodic boundary
condition, the functional can be written as

F�Ez� = �
�

dr��� � E
z
*ẑ� · ��rs

−1�� � Ezẑ�� − k0
2�rzEz

*Ez� ,

�3�

where � is the domain of integration, in this case the unit cell
of a PC. Note that the boundary surface integral term van-
ishes because of the Bloch boundary condition at the unit
cell surface.

Similarly, for the TE mode, the scaler Helmholtz equation
of magnetic field Hz is

� � ��rs
−1�� � Hzẑ�� − k0

2�rzHzẑ = 0, �4�

where �rs= �
�xx �xy

�yx �yy
� is the relative in-plane anisotropic permit-

tivity and �rz is the relative permeability in the z direction.

The solution can be expressed as a Bloch wave as

Hz = UH�x,y�eik·r �5�

and the functional is

F�Hz� = �
�

dr��� � H
z
*ẑ� · ��rs

−1�� � Hzẑ�� − k0
2�rzHz

*Hz� .

�6�

These functionals will be used in the SEM to arrive at dis-
crete equations.

When the material is arbitrary anisotropic instead of in-
plane anisotropic, or when the wave number along ẑ direc-
tion is not zero, the TM mode and TE mode will couple to
each other. In this case, the full vector version of Helmholtz
equation of electric field is needed to describe the problem

� � ��−1�� � E�� − k0
2�E = 0, �7�

where � and � are both 3�3 matrices. In order to keep the
continuity of tangential components of electric field, we
write the field in the form of E=U�x ,y�eikzz instead of
U0�x ,y�eik�·reikzz, where U�x ,y� is a periodic vector function
with Bloch periodical boundary condition. In the case of a
square lattice PC, the cell is square, and then the boundary
condition is given as

U��x + a,y� = U��x,y�eikxa,

U��x,y + a� = U��x,y�eikya, �8�

where U� is the tangential component of U. In the case of
triangular lattice PC, the boundary condition is more compli-
cated but similar. The functional is similarly given as

F�E� = �
�

dr��� � E*� · ��−1�� � E�� − k0
2�E*E� . �9�

In the Secs. II B–II D, we first describe the formulation
for the scaler Helmholtz equation, and then in Sec. II E we
extend the formulation to the vector Helmholtz equation.

B. The GLL basis functions and discretization

To obtain discretized equations in the FEM framework for
Eqs. �3� and �6�, we use the GLL polynomials as the basis
functions for the unknown fields Ez and Hz. The GLL poly-
nomials can be used to interpolate a function with spectral
accuracy, so that the error can be reduced exponentially by
increasing the order of GLL polynomials. On the other hand,
the GLL polynomials look similar to a local pulse function
such as a Gaussian pulse with oscillations. These GLL basis
functions can be used to expand piecewise smooth functions
better than other lower-order basis functions such as linear
basis functions used in the regular FEM. The Nth-order 1D
GLL polynomials are defined as �16,17�

� j
�N���� =

− 1

N�N + 1�LN�� j�
�1 − �2�LN� ���

�� − � j�
, �10�

where j=0,1 , . . . ,N, LN��� is the Nth-order Legendre poly-
nomial and LN� ��� is its derivative, � j is the jth root of equa-
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tion �1−�2�LN� ���=0 which also gives the positions of nodal
points in the SEM, and �� �−1,1�. For our 2D problem, a
basis function in the reference domain is written as the tensor
product of two 1D basis functions, as given by

�̃r,s
�N���,	� = �r

�N�����s
�N��	� , �11�

where � ,	� �−1,1�. The distribution of nodal points ��r ,	s�
in the reference domain are shown in Fig. 1�a�, with N+1
points in the � and 	 directions, respectively. After a curvi-
linear mapping between the real physical space �x ,y� and
reference space �� ,	�, a curved element in the physical space
can be written in terms of the reference coordinates as x
=x�� ,	�, y=y�� ,	�. Then the basis function in one curved

physical element is �r,s
�N��x ,y�=�̃r,s

�N��� ,	�. From Fig. 1�a�,
we note that the distribution of nodal points is denser near
the edge of an element than in the middle of the element.
Since the field usually changes abruptly at the boundaries of
different materials, this distribution of nodal points has great
advantage of simulating systems with discontinuous dielec-
tric materials.

In the SEM, the unit cell of a PC is divided into a number
of nonoverlapping curvilinear quadrilateral elements confor-
mal to the geometry, as illustrated in Fig. 1�b� for a square
lattice. Each quadrilateral element is mapped into a reference
square element in Fig. 1�a� with �N+1�2 nodal points, where
the nodal points on the element boundary are shared with the
adjacent elements. Thus, the basis functions associated with
nodal points interior to an element have the support in that
element, while the basis functions associated with the nodal
points on an element boundary have support on all the ele-
ments sharing that boundary. Furthermore, the basis func-
tions associated with an outer boundary of the PC unit cell
are shared by the element at the opposite side of the unit cell.
As a result, if there are M independent basis functions �or
nodal points� in a unit cell of the PC, the periodic part of the
solution of the TM mode can be expanded by the basis func-
tions within the unit cell as

UE = 	
j=1

M

Ej� j
�N��x,y� , �12�

where j= �r ,s� is a compound index of the basis functions.
Equivalently, within each element, the field can be obtained
by the basis functions as interpolation functions

UE = 	
r,s=1

N

Er,s�r,s
�N��x,y� , �13�

where Er,se
ik·r is the electric field at the nodal point

�x��r ,	s� ,y��r ,	s��.
Inserting Eq. �12� in Eqs. �2� and �3� and applying the

variational principle yields the eigenvalue equation

S · E = k0
2M · E , �14�

where E= �E1 ,E2 , . . . ,EM�T is the unknown electric field vec-
tor, S and M are the stiffness matrix and mass matrix given
by

S = 	
e=1

Ne

S�e�, M = 	
e=1

Ne

M�e� �15�

with elemental stiffness and mass matrices

Sj,k
�e� = �

�e

dr����− ik� � � j
�N�ẑ��rs

−1��� + ik� � �k
�N�ẑ�� ,

�16�

Mj,k
�e� = �

�e

dr� j
�N��rz�k

�N�, �17�

where �e is the area of the eth element and Ne is the total
number of elements in the unit PC cell. The eigenvalue prob-
lem in Eq. �14� can then be solved to obtain the band struc-
tures. As discussed later, the SEM will have a simplified
eigenvalue problem compared with the FEM.

C. Mapping of a curved element to the reference element

It is more convenient to calculate the integration in Eqs.
�16� and �17� in the reference element than in the real space.
The 2D mapping x�� ,	� and y�� ,	� can be expressed by
functions of the four boundary curves of the element. Take
x�� ,	� as an example: the functions of the four boundary
curves of one element are x�� ,1�, x�� ,−1�, x�1,	�, and
x�−1,	�. These could be straight lines or curves depending
on the geometry, and can be given analytically or by inter-
polating some controlling points on the curved element. For
example, a circular arc is given by x=R cos�
	�, where R is
the radius and 
 the angular parameter. The two-dimensional
mapping function is

x��,	� =
1 + �

2
x�1,	� +

1 − �

2
x�− 1,	� �

1 + 	

2
x��,1�

+
1 − 	

2
x��,− 1� − 
1 + 	

2
�1 + �

2
x�1,1�

+
1 − �

2
x�− 1,1�� +

1 − 	

2
�1 + �

2
x�1,− 1�

+
1 − �

2
x�− 1,− 1�� . �18�

The mapping function for y�� ,	� is similar. The Jacobian
matrix can be calculated as

(a) (b)

FIG. 1. �a� Locations of nodal points of the fourth-order SEM in
the reference element. �b� SEM mesh and nodal points in the real
space of one unit cell of square lattice 2D PC. There are four nodal
points lying along the thick curve.
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J = �
�x

��

�y

��
0

�x

�	

�y

�	
0

0 0 1
� . �19�

Making use of the formula �18�

� � � j
�N��x,y�ẑ =

1

det�J�
JT�̃ � �̃r,s

�N���,	�ẑ � f j �20�

and � j
�N��x ,y�ẑ=�̃r,s

�N��� ,	�ẑ, dxdy=det�J�d�d	, the integra-
tions in Eqs. �16� and �17� are transferred to the reference
coordinates as

Sj,k
�e� = �

−1

1 �
−1

1

d�d	 det�J���f j − ik � �̃ j
�N�ẑ�

��rs
−1�fk + ik � �̃k

�N�ẑ�� , �21�

Mj,k
�e� = �

−1

1 �
−1

1

d�d	 det�J��̃ j
�N��rz�̃k

�N�. �22�

The numerical integration is implemented by the GLL
quadrature integration method. The Nth order GLL quadra-
ture is exact for the integration of polynomials up to order
2N−1. For an orthogonal element, the Jacobian is a constant
matrix, and thus the integration with GLL quadrature of N
+1 order gives the exact evaluation. For a curved element,
the Jacobian is not polynomials in general, so we use higher
order GLL quadrature, up to N+6, for the integration to ob-
tain accuracy as high as 10−12. However, as discussed below,
we have also used the Nth-order GLL quadrature for this
integration, which yields a diagonal mass matrix, thus a
regular eigenvalue problem rather than a generalized eigen-
value problem. This further improves the efficiency of the
SEM.

D. Diagonal mass matrix and regular eigenvalue problem

In addition to more accurate results and higher conver-
gence rate, another advantage of the SEM over the FEM is
that the generalized eigenvalue problem in Eq. �14� becomes
a regular eigenvalue problem because of the orthogonality of
the SEM basis functions. If we use GLL approximation �i.e.,
with only the Nth-order GLL quadrature to calculate the in-
tegration �22��, the quadrature points are exactly the same as
the nodal points of GLL basis functions. As a result, the
integration of the product of two Nth-order GLL basis func-
tions is zero unless they are the same basis function. The
consequence is that the mass matrix Mj,k

�e� and hence M be-
comes diagonal. Thus, Eq. �14� can be converted into

S̃ · Ẽ = k0
2Ẽ , �23�

where

Ẽ = M1/2 · E, S̃ = M−1/2 · S · M−1/2 �24�

are trivial to obtain and the sparsity of matrix S̃ is the same
as S. Note that the diagonal mass matrix applies even if the

medium is in-plane anisotropic. Numerical results show that
when the order of SEM basis functions is higher than 4, the
difference between eigenvalue k0 of Eqs. �14� and �23� con-
verges as fast as the relative error of eigenvalues in Eq. �14�.
This means that the GLL quadrature approximation con-
verges to the same result as the SEM with exact integration.

E. The mixed-order SEM for vector fields

In the case of full vector Helmholtz equation, the discreti-
zation of the equation and calculation of matrix elements are
similar to those for a scaler Helmholtz equation. In order to
suppress spurious, we employ the mixed-order SEM �17�,
which has a special choice of basis functions: The vector
basis functions of the Nth order SEM in the reference do-
main have three kinds for three directions, which are given,
respectively, as �17�

�̃r,s
� ��,	� = �r

�N−1�����s
�N��	� ,

�̃r,s
	 ��,	� = �r

�N�����s
�N−1��	� ,

�̃r,s
z ��,	� = �r

�N�����s
�N��	� . �25�

The electric field in the reference domain is expanded as

Ũ = 	
u,r,s

�̃r,s
u ��,	� , �26�

where u takes the value �̂ , 	̂ , ẑ, and then there are a total
�N+1�2+2N�N+1� basis functions in one element corre-
sponding to �N+1�2+2N�N+1� nodal points with each direc-
tion.

At the interface of two curvilinear quadrilateral elements,
only the tangential field components need to be continuous.
This means that not all of the nodal points on the element
boundary are shared with the adjacent element. The covari-
ant mapping which can keep the tangential components con-
tinuous is given as �18�

�r,s
u �x,y� = J−1�̃r,s

u ��,	� ,

� � �r,s
u �x,y� =

1

det�J�
JT�̃ � �̃r,s

u ��,	� . �27�

The superscript u on the left-hand side means the corre-
sponding direction in real space. The direction can be spa-
tially varying when the element is curved. Under this map-
ping, only the nodal points with direction tangential to the
boundary of the element in the reference domain are shared
with the adjacent element. The basis functions associated
with the nodal points on an element boundary with tangential
component to the boundary have support on all the elements
sharing that boundary. In the two-dimensional problem, the
size of element along ẑ direction is infinitely large, so that
the nodal points on a boundary with ẑ direction is always
tangential to the boundary. The basis functions associated
with and tangential to an outer boundary of the PC unit cell
are shared by the element at the opposite side of the unit cell
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with a Bloch phase difference given in Eq. �8�. As a result, if
there are M independent basis functions in a unit cell of the
PC, the electric field without the phase along ẑ direction can
be expanded by the basis functions as

U = 	
j=1

M

Ej� j�x,y� , �28�

where j= �u ,r ,s� is a compound index of the basis functions.
Substituting Eq. �28� into Eq. �9�, applying the variational

principle and transferring the integration to reference coordi-
nates result in an eigenvalue equation with the same form as
Eq. �14�, with the matrix elements given by

Sj,k
�e� = �

−1

1 �
−1

1

d�d	 det�J���f j + ikzẑ

��J−1�̃ j��* � �−1 · �fk + ikzẑ � �J−1�̃k��� , �29�

Mj,k
�e� = �

−1

1 �
−1

1

d�d	 det�J��J−1�̃ j�*��J−1�̃k� , �30�

where

f j �
1

det�J�
JT�̃ � �̃ j��,	� . �31�

III. NUMERICAL EXAMPLES

Numerical results of �a� a square lattice, �b� a triangular
lattice isotropic dielectric rod PC, and �c� anisotropic square
lattice, are shown in this section to validate the SEM for the
band structures of PCs, and to test the accuracy of the
method. The GLL quadrature integration approximation is
used, which gives a diagonal mass and thus a regular eigen-
value problem. Furthermore, an anisotropic example is simu-
lated to study the effects of anisotropy.

A. A PC with a square lattice

We have calculated the band structure of a square lattice
2D PC. It is composed of infinite length parallel alumina
rods with relative permittivity �r=8.9 and radius r=0.2a in
the air, where a is the lattice constant. The SEM mesh with
curved quadrilateral elements and all nodal points are shown
in Fig. 1�b�. In the unit cell, there are 13 curved quadrilateral
elements, and 208 nodal points for the fourth order SEM.
The band structure calculated with fourth order basis func-
tions in the SEM is shown in Fig. 2 �marked by circles�. For
comparison, the band structure obtained by the PWE is also
plotted in the figure �solid lines�. The two sets of results
agree well for both TE and TM modes.

To further understand the accuracy of the SEM, its nu-
merical convergence behavior is examined by comparing the
eigenvalue of the SEM results with various orders of basis
functions with an accurate reference result obtained by a
very high order SEM �N=16�; note that we did not use the
PWE results as the reference because the convergence of the
PWE is not high enough �thus with lower accuracy�. Our

numerical results from the SEM have shown that the relative
error decreases to 10−12 as N increases to 14. Figure 3 shows
the relative errors of the first and tenth band at X point of the
first Brillouin zone of TM and TE modes versus �a� the num-
ber of SEM nodal points in the entire unit cell, and �b� the
order of SEM basis functions. Figure 3�b� shows that the
convergence curves are nearly straight lines in this semilog
plot, indicating the spectral accuracy property for the SEM
�i.e., the error decreases exponentially as N increases�. The
tenth-order solution converges slightly more slowly than the
first-order solution because of its higher frequency. The rela-
tive errors for the second to ninth bands, which are not
shown here for clarity, lie between those of the first and tenth
bands. The errors of all bands decrease exponentially, sug-
gesting that the SEM is an efficient tool for calculating the
structures of higher bands because the errors of higher bands
decrease nearly as fast as the first band.

The accuracy can be better characterized by the sampling
density, or the number of nodal points per wavelength �PPW�
in such wave applications. For an inhomogeneous problem,
the value of sampling density depends on position as the
wavelength in medium is spatially varying. Each element has
a different number of nodal points per wavelength, thus the
sampling density. The smallest sampling density dominates
the error in the whole domain. As a result, we analyze the
position with smallest sampling density, which is marked by

X M
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(a)
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(b)

Γ ΓΓΓ

FIG. 2. Band structure of �a� TM mode and �b� TE mode of the
2D square-lattice PC formed by alumina rods with �r=8.9 and ra-
dius r=0.2a in the air. Solid lines are results from the plane wave
expansion method, and circles are results from the SEM.
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FIG. 3. �a� Relative error versus the number of nodal points for
the eigenvalue at the X point of the first Brillouin zone of the first
and the tenth bands in Fig. 2. �b� Relative error of the same data
versus the order of SEM basis functions in a semilog scale plot.
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a thick curve in Fig. 1�b�. The length of the thick curve is
0.1�a, and there are N nodal points along this line for the
Nth order SEM basis functions. For a line with the same
length outside the cylinder, there are also approximately N
nodal points along the line, but the wavelength is three times
larger in the cylinder than in the air because the relative
permittivity of the cylinder is �8.9. For the tenth band, the
frequency is about 1.2�a /2�c, which corresponds to a
wavelength in air region a /1.2 and wavelength in alumina
rods a /1.2�8.9. This mean that along the thick curve, the
sampling density is N�a /1.2�8.9� / �0.1�a��0.89N PPW.
When we use N=4 �the fourth order SEM�, the relative error
is smaller than 10−3, which is already acceptable in practical
applications. This means that the SEM can give accurate
results with a sampling density as small as 4 PPW.

The cost of SEM is much smaller than that of PWE.
When we use the MIT photonic-bands package �6� to imple-
ment PWE, 256�256 resolution is needed to obtain the
same accuracy as the fourth order SEM. This results in an
eigenvalue problem of 65 536�65 536 matrix. In contrast,
the fourth order SEM method results in 208 nodal points,
which gives 208�208 stiffness and mass matrices. As to the
CPU time, at the given resolution the PWE needs 36 s for
each k point to calculate ten bands. The band structure with
30 k points needs 1080 s. For the implementation of SEM,
we can first expand Eq. �21� into summation of three inte-
gration and extract the function of k out of the integration.
After calculating all the integration in the expansion of Eqs.
�21� and in Eq. �22�, we can use the value of k for each k
point to construct the stiffness matrix and obtain the mass
matrix, respectively. In our implementation of fourth order
SEM, the calculation of all the integration takes 42 s, and the
construction of stiffness matrix and calculation of the ten
lowest eigenvalues for each k point takes 0.5 s. Therefore,
the band structure with 30 k points and ten bands needs 57 s,
which is about 19 times smaller than the PWE.

B. A PC with a triangular lattice

Another example is a 2D PC with a triangular lattice. It is
composed of dielectric cylinders with relative permittivity

�r=11.4 and radius r=0.2a in the air. The SEM mesh scheme
as well as all the nodal points are shown in Fig. 4. There are
14 quadrilateral elements and 224 nodal points for the fourth
order SEM. Similarly, the band structures for TE and TM
modes with the fourth order basis functions in SEM are
shown in Fig. 5 by circles, while the corresponding PWE
results are plotted with solid lines for comparison. The rela-
tive errors of the first and the tenth bands at X point of the
first Brillouin zone are plotted in Fig. 6 versus �a� the num-
ber of nodal points and �b� the order of SEM basis functions.
It shows that the error decreases exponentially with N and as
fast as that of the square-lattice 2D PC. The length of the
thick curve in Fig. 4 is 0.2�a /3 and the wavelength of the
tenth band in the dielectric cylinder is about a /1.2�11.4, so
that the sampling density along this curve is
N�a /1.2�11.4� / �0.2�a /3��1.18N. As a result, the fourth or-
der SEM with five PPW is able to give acceptable accuracy
with error smaller than 0.1%.

C. Effects of material anisotropy

Some materials such as gyromagnetic materials have an-
isotropic permittivity or permeability. The SEM is also suit-
able for the calculation of the band structures in such aniso-
tropic media. Yttrium-iron-garnet �YIG� is one of this kind
of material. When there is an external magnetic field along
the z direction, the in-plane relative permeability is

FIG. 4. The SEM mesh and nodal points in the real space of one
unit cell of a triangular-lattice 2D PC. There are four nodal points
lying along the thick curve.
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If the applied magnetic field is zero, the off-diagonal value
�=0 and �=1. When the applied field is 1600 G, the tensor
elements of YIG at 4.28 GHz are �=12.4 and �=14. The
relative permittivity of YIG is rz=15 �19�. We calculated the
band structure of the photonic crystal design given in Ref.
�20�, which is a square lattice of YIG cylinders with radius
r=0.11a. Figure 7 plots the band structure of TM mode �a�
without and �b� with the applied magnetic field. Results for
the first four bands from Ref. �20� are also plotted as circles
for comparison. The convergence of the relative error of the
first and tenth bands at X point versus the order of SEM basis
functions is plotted in Fig. 7�c� and 7�d�, respectively. We
can observe the significant change of the band structure due
to the applied magnetic field. Meanwhile, when the material
is in-plane anisotropic, the convergence of relative error is as
fast as that of an isotropic material.

D. Effects of out-of-plane propagation

When the out-of-plane propagation wave number kz is
nonzero, the TM and TE modes couple to each other as men-
tioned before. The full vector fourth-order SEM with mixed
order basis functions is used to calculate the band structure
with the out-of-plane propagation of the same 2D square
lattice PC as that in Sec. III A. The 20 lowest bands that start
at � point and X point are plotted in Figs. 8�a� and 8�b�,
respectively. When kz=0, the stiffness and mass matrices re-
duce to two independent matrices for TM and TE modes,
respectively. The submatrices for TM mode are exactly the
same as that from the scaler SEM for TM mode; however,
the submatrices for TE mode are totally different from the
matrices produced by the scaler SEM for TE mode. Numeri-

cal results show that the relative error for TE mode of the
vector SEM is also smaller than 0.1%. When kz increases, the
eigenvalues move upward as shown in Fig. 8. All of the
bands move out of the light cone in free space when kz is
large, except for the first band starting from � point which
starts out of the light cone at the beginning. Our experience
of implementation of the vector SEM shows that there are no
spurious modes with nonzero eigenvalues, and the number of
spurious modes with zero eigenvalue is equal to the number
of nodal points in the ẑ direction.

IV. CONCLUSION

A higher-order finite element method, the spectral element
method, is introduced to solve band structures of 2D aniso-
tropic photonic crystals. Gauss-Lobatto-Legendre polynomi-
als are used to construct the high-order basis functions in the
spectral element method. Compared to the conventional fi-
nite element and finite difference methods, the SEM can
have spectral accuracy with the error decreasing exponen-
tially with the order of basis functions. Analytical mapping
between the reference space and the real physical space with
curved geometries allows accurate geometrical model in the
SEM. Compared to the numerical results in Ref. �12�, the
relative error of SEM decrease faster than the multidomain
pseudospectral method. The SEM has very good conver-
gence of error for as high as the tenth band. A sampling
density as small as four nodal points per wavelength can
obtain acceptable accuracy. The method works well with in-
plane anisotropic materials as well as with isotropic materi-
als. When there is out-of-plane propagation, the full vector
SEM gives results with the same accuracy. The method does
not produce any spurious modes with nonzero eigenvalues,
thus making it easy to distinguish the zero eigenvalue spuri-
ous modes from the real modes.
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